skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Yixuan_Even"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a "judgment" on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025